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 EMERGENT STRUCTURES IN LARGE NETWORKS

 DAVID ARISTOFF,* University of Minnesota

 CHARLES RADIN,** The University of Texas at Austin

 Abstract

 We consider a large class of exponential random graph models and prove the existence
 of a region of parameter space corresponding to the emergent multipartite structure,
 separated by a phase transition from a region of disordered graphs. An essential feature
 is the formalism of graph limits as developed by Lovász et al. for dense random graphs.
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 1. Introduction and statement of results

 Complex networks, including the Internet, World Wide Web, social networks, biological
 networks, etc., are often modeled by probabilistic ensembles with one or more adjustable
 parameters; see, for instance, [4], [5], [9], [12], and the many references therein. We will use
 one of these standard families, the exponential random graph models (see the references in [2],
 [9], [12], and [13]), to study how the multipartite structure can exist in such networks, stable
 against random fluctuations, in imitation of the modeling of the crystalline structure of solids
 in thermal equilibrium.

 Let H' be an edge, and let Hi be any finite simple graph with k > 2 edges. We will be
 considering the two-parameter family of exponential random graph models, with probability
 mass function on graphs Gm with N nodes given by

 ^ßi = exp{N2[/3iii(Gw) + ßitiiGu) - ÝNÍfi', /*2)]}, O)

 where í;(Gyv) is the density of graph homomorphisms H¿ - ► G#:

 |hom(///, Gņ)'

 I V(G/v)|'V(//í)l '

 Here VX) denotes a vertex set, and the term ^N(ß ',ßi) in (1) gives the probability
 normalization.

 We think of the parameters ß ' and ß2 as representing mechanisms for influencing the network,

 as pressure and temperature do in models of materials in thermal equilibrium. Indeed, it is easy
 to see by differentiation that if ß' is fixed, varying ß2 will vary the mean value of the 'energy'
 density, t2 (G#); similarly, if ß2 is fixed, varying ß' will vary the mean value of the edge
 density, ¿i(G#). Furthermore, if the mean value E^^2[ři(G^)] of í'(Gm) is fixed and /*2 < 0
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 884 D. ARISTOFF AND C. RADIN

 then, as we will see below, the random graph will have a very low value for the mean value
 ^ßuß2[t2(GN)] of í2(Gn)> However, if Eßuß2[t'(GN)] is fixed, any variation of ßi > 0 does
 not affect Eßuß2[ti(GM)] (when N is large) [15]. It is natural to treat separately the cases
 ß2 < 0 and ß2 > 0. The former is called repulsive , the latter attractive ; see [15]. The attractive
 case ß2 > 0 has been completely analyzed in [15], so we concentrate here on the case with
 repulsion, ß2 < 0.
 It is useful to analyze the phenomenon in the last paragraph, as regards ß2 <£ 0, in two stages.

 First, consider the nonprobabilistic optimization problem in which one minimizes the density
 í2(Gn) among graphs of N nodes, corresponding intuitively to ß2 = - oo. Such problems
 have been widely studied following the pioneering work of Turán [16]. One can understand
 the exponential random graph models as a means of analyzing such 'extremal graph theory'
 problems using the language of statistical mechanics [14], [17]. The function x/fNißi^ßi)
 represents the free energy of a grand canonical ensemble, which is the Legendre transform of
 the entropy of a microcanonical ensemble. The latter is the usual setting for extremal graph
 theory problems.
 Fundamental to our results are questions of analyticity of the normalization in (1), which

 we discuss next. (See [8] for elementary properties of real analytic functions of several real
 variables.) An explicit formulation of the normalization is

 fNißußl) = ^2 lnfeexp{Ař2[)Siř1(Gw) + )02ř2(GW)]}Y (3)
 G M

 It is proven in [2] that

 too(ß',ßl)= lim ifNiß i,ß2)
 TV- >00

 exists for all ß',ß2- By Theorem 6.1 of [2], the method, using analyticity, of the proof of
 Theorem 3.10 of [15] can be immediately extended to prove that Voo(ßi > ßi) is analytic in the
 real variables ß' and ß2 when |>02 1 < 2/[k(k - 1)], where k is the number of edges in fy. It is
 also noted in [15] that at points where Voo is analytic,

 d d
 -rrtoo(ß', ßl) = lim - xlTN(ßi,ß2), (4)
 ößj oo ößj

 that is, the partial derivatives commute with the limit N -+ oo. Partial derivatives of Voo,
 when they exist, give information on the large- N mean and variance of the densities t' (Gm)
 and Í2ÍG m) (see [15]), and it is standard in the corresponding modeling of materials, in part for
 this reason, to define phases and phase transitions as follows (see [6]).

 Definition. A phase is an open connected region of the parameter space {(ß', ß2)} which is
 maximal for the condition that Voo(ßi, ßi) is analytic. The 'high temperature phase' is that
 domain of analyticity of Voo(ßi, ^2) which contains the strip -2/[k(k - 1)] < ß2 < 0. There
 is a phase transition at ( ß *, ß1) if (jö*, ß%) is a boundary point of an open set on which Voo is
 analytic, but Voo is not analytic at (ß', ß|).

 In this notation our main result is as follows.

 Theorem 1. Assume that the chromatic number x (Hi) of H2 is at least 3. Then there is a

 function s(ß'), -00 < ß' < 00, with s(ß') < -2/k(k - 1), such that , for every ß', the
 interval {(ß' , ^2) I ßl S s(ßi)} does not intersect the high temperature phase.
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 2. Proof of Theorem 1

 We write P for the probability mass function P^,^ given by (1), and E for the expectation
 Eßl.ß2'

 Before beginning we need some notation; see [1], [2], [3], [9], and [10] for discussions of
 the ideas behind these terms, which basically provide the framework for 'infinite volume limits'

 for graphs, in analogy with the infinite volume limit in statistical mechanics [14].
 To each graph GoniV nodes we associate the following function on [0, l]2:

 G Í1 if ('Nx], r^}7!) is an edge of G ,
 f G ix, y ) =

 0 otherwise.

 We define TV to be the space of measurable functions h : [0, l]2 -> [0, 1] which are symmetric,
 i.e. h(x , y) = h(y , x) for all Jt, y. For h £ TV, we define

 /(//, h) = I M h(xļ , Xj) dx' - - - dx¿,
 VJMH)

 where E(H) is the edge set of H and i = | V (//) | is the number of nodes in //, and note that,
 for a graph G, t(H , G) defined in (2) has the same value as t(H, fG). For g e IV, we write
 ti(g) = t(Hi,g) for i = 1,2.

 We define an equivalence relation on IV as follows: / ~ g if and only if t(H, f) = t(H , g)
 for every simple graph H. Elements of the quotient space, TV, are called 'graphons', and the
 class containing h e IV is denoted h.

 On TV we define a metric in steps as follows. First, on TV we define

 dn(f>g)= SUP / [f(x,y)-g(x,y)]dxdy.
 s,rç[o,i] I JsxT

 Let E be the space of measure preserving bijections o of [0, 1], and, for / in TV and o e E,
 define fa{x, y) = /(a(x), cr(y)). Using this, we define a metric on W by

 inf dutfox,go2).
 0 1,CT2

 In the topology induced by this metric, IV is compact [11].
 Next we need a few terms associated with Ýoo- Define, on [0, 1],

 I(u) = ju In (u) + ^(1 - u ) ln(l - u),

 and, on TV,

 I(h)= f I(h(x,y))dxdy.
 J [OA]2

 Also, on TV we define

 nh) = ßiti(h) + ß2t2(h).

 The above is relevant because it was proven in Theorem 3.1 of [2] that i^ooCßi, ßi) is the
 solution of an optimization problem:

 ^oo (01 , ßi) = sup [T (h) - I (A)]. (5)
 hei?
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 (Note that it follows immediately from (5) that ^00(^1, /*2) is convex.) From Theorem 3.2 of
 [2] one has some control on the asymptotic behavior as N -> 00, i.e.

 <$□[0#, F*(ß 1, ß2)] -»O in probability as N - ► 00,

 where F* (ß' , ßi) is the (nonempty) subset of TV on which T - I is maximized, and G n = f°N .
 We now return to our proof. Our proof will be by contradiction, so we assume from here

 on that i/foo(ßi, ßi) is analytic in ß' and ß2 on the entire half-line L = {(ß*, ^2) : ßi < 0},
 where ß * is arbitrary but fixed. We will find a contradiction, which will prove the existence of
 the function s(ß 1). Consider the function

 C(ßuß2):=(^(ßuß2)^ - tjj^ißi, ßi), (6)
 where/: is the number of edges in //2. Note that C(ß', ^2) is analytic on L, since ýoo(fi', /*2) is.
 Proposition 3.2 of [15] proves that, for all ^2 < 0, there is a unique solution u*(ß 1, ^2) to

 the optimization of

 ß'u + ß2 uk - ^ulnu - 5(1 - w)ln(l - u)

 for u e [ 0,1]. Then from Theorems 6.1 and 4.2 of [2] we can use the same argument as used
 to prove Equations (33) and (34) of [15] to prove that, for -2/[k(k - 1)] < ßi < 0,

 0
 TT- ^00(^1, ßi) - lim E[fi(Gw)] = t'(u*) = u*(ßi, ßz),
 op' N^-oo

 -¿-Mßu ßi) = lim E[í2(Gjv)] = í2("*) = (u*(ßi,ßz))k.
 oß 2 N^-oo

 It follows that C(ßi, ßi) = t'(u*)k -t2(u*) = Ofor -2/[k(k- 1)] < ß2 < 0. Since a function
 of one variable which is analytic on L and constant on a subinterval must be constant on L, it
 follows that

 C 08?, A) =0 on L, (7)

 and so C is identically 0 on the whole high temperature phase. (Any point in the phase can be
 connected to the ß' axis by an analytic curve.)
 Fix £ > 0 and i e {1,2}. Recall that ß' - ß* is fixed arbitrarily. Write F*(/^) for the set

 F*(ß', ß2) C W defined above. Using Theorem 7.1 of [2], choose ß'2 sufficiently negative so
 that, for every ß2 < ß^

 sup 8n(f,pg)<^, (8)
 feF*(ß2)

 where p = e2ßi/(l + e2ßl) and g(x , y) = 1 unless L(x(#2) - 1)*J = L(x(#2) - 1)?J. in
 which case g(x, y) has value 0.

 Let ß2 < ßf2- Using Theorem 3.2 of [2], choose No(ß2) such that N > No(ß2) implies that

 p(ía(0„,F-(«)>¿)<4. (9)
 Let N > No(ß2) and A£jm = {G# : ¿□(G^, F*(^)) < e /(3k)}. There exist hcN e F*(ß2)
 corresponding to each G# e Ae such that

 8u(GN, hcN) < - . (10)
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 Write EU for the restriction of the expectation to the set A. Using (8) and (10), we have

 £ Sn&N.pgyPiGN)

 ^ ^2 [<5[I|(õyv, hcN) + S'j(hGN, P§)W(Gn)
 Gn£As,N

 <E [4+s]"G»>
 Gn€Ac¡N

 2 £

 *3* (11)
 for N > N0(ß2)-
 From Lemma 4.1 of [10], it is easy to see that

 'ti(GN) - ti(pg) I < k8a(GN, pg ). (12)

 Write Ã£>n = { Gn '■ S[j(Gn, F*{ß 2)) > e/(3&)}. From (9), (11), (12), and the fact that
 0 < 1»

 |E[í«(Gat)] - ti(pg) I < E[|i,-(G/v) - ti(pg) |]

 < fcE[án(G¿v, />#)]

 = k(E'A,J6a(GN, pģ)] + E'ĀiļN[Sa(GN, pg)])

 <k{īič + īk)
 = s (13)

 for N > Noißz). Direct computation of (3) shows that

 d'ili M

 -^p(j8f,A) M = E Ui(GN)]. (14) dpi

 Combining (14) with (4), we may take the limit AT -»• 00 in (13) to obtain

 ti(pg) - ^pOS¡'#>) <e. °Pi

 Since e > 0 was arbitrary,

 ß2^-00 Um ^■(ßt,ß2) oßi = ti(pg). (15) ß2^-00 oßi

 Direct computation using Equation (2.10) of [2] yields

 e2^1 (y (H) - 2)

 Start = 0 and 'i(P8)=(1+e2ft)(x(H)_1) >0. (16)
 Now, by combining (6) with (15)-(16), we find that limÄ^_oo C(ß*, ß2) > 0, in contradiction
 with (7), which proves the theorem.
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 3. Conclusion

 Consider any of the two-parameter exponential random graph models with repulsion covered
 by our theorem. We have proven that the high temperature phase is separated from the
 low energy regime by a phase transition. Our proof is based on the traditional modeling
 of equilibrium statistical mechanics using analyticky and an order parameter [7], [14], [17].
 We also emphasize that this method could not have been used to prove the transition found
 in [15] for attractive exponential random graph models since there is a critical point for that
 transition: indeed, there is only one phase for ß2 > 0.

 There remain many open questions. Perhaps the most pressing is the character of the
 singularity of Ýooifii , ßi) at the boundary of the high energy phase. In the attractive case there

 is only one phase, but there are jump discontinuities, in the first derivatives of y1roo(ß', ßi)
 (namely, the average edge and energy densities), across a curve where two regions of the phase
 abut, while the edges are independent in the probabilistic sense throughout the phase [15]. We
 do not know the nature of the singularity at the boundary of the high energy phase for the
 case of repulsion studied in this paper, though we expect the first derivatives of ^00(^1, ßi)
 to be discontinuous across the boundary. In analogy with equilibrium materials there may be
 multipartite phases with different numbers of parts at low energy, though this may require more

 complicated interactions [2].
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