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EMERGENT STRUCTURES IN LARGE NETWORKS

DAVID ARISTOFF,* University of Minnesota
CHARLES RADIN,** The University of Texas at Austin

Abstract

We consider a large class of exponential random graph models and prove the existence
of a region of parameter space corresponding to the emergent multipartite structure,
separated by a phase transition from a region of disordered graphs. An essential feature
is the formalism of graph limits as developed by Lovasz et al. for dense random graphs.
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1. Introduction and statement of results

Complex networks, including the Internet, World Wide Web, social networks, biological
networks, etc., are often modeled by probabilistic ensembles with one or more adjustable
parameters; see, for instance, [4], [5], [9], [12], and the many references therein. We will use
one of these standard families, the exponential random graph models (see the references in [2],
[9], [12], and [13]), to study how the multipartite structure can exist in such networks, stable
against random fluctuations, in imitation of the modeling of the crystalline structure of solids
in thermal equilibrium.

Let H; be an edge, and let H, be any finite simple graph with k > 2 edges. We will be
considering the two-parameter family of exponential random graph models, with probability
mass function on graphs Gy with N nodes given by

Pp,.5,(Gn) = exp{N?[B111(GN) + B212(GN) — ¥n (B1, B2}, N
where #; (G ) is the density of graph homomorphisms H; — Gy:

|hom(H;, Gn)|

"ON = G mmeE

@)
Here V() denotes a vertex set, and the term ¥x (81, B2) in (1) gives the probability
normalization.

We think of the parameters 8 and B, as representing mechanisms for influencing the network,
as pressure and temperature do in models of materials in thermal equilibrium. Indeed, it is easy
to see by differentiation that if B, is fixed, varying B, will vary the mean value of the ‘energy’
density, £(Gy); similarly, if B, is fixed, varying B; will vary the mean value of the edge
density, t; (G n). Furthermore, if the mean value Eg, g,[t1(Gn)] of ; (G y) is fixed and B, < 0
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884 D. ARISTOFF AND C. RADIN

then, as we will see below, the random graph will have a very low value for the mean value
Eg, ,[12(Gn)] of t2(G v). However, if Eg, g,[t1(G )] is fixed, any variation of B, > 0 does
not affect Eg, 4,[t2(Gn)] (when N is large) [15]. It is natural to treat separately the cases
B2 < 0and B; > 0. The former is called repulsive, the latter attractive; see [15]. The attractive
case B2 > 0 has been completely analyzed in [15], so we concentrate here on the case with
repulsion, 8, < 0.

Itis useful to analyze the phenomenon in the last paragraph, as regards 8, < 0, in two stages.
First, consider the nonprobabilistic optimization problem in which one minimizes the density
t2(G ) among graphs Gy of N nodes, corresponding intuitively to 8, = —oo. Such problems
have been widely studied following the pioneering work of Turdn [16]. One can understand
the exponential random graph models as a means of analyzing such ‘extremal graph theory’
problems using the language of statistical mechanics [14], [17]. The function ¥ (81, B2)
represents the free energy of a grand canonical ensemble, which is the Legendre transform of
the entropy of a microcanonical ensemble. The latter is the usual setting for extremal graph
theory problems.

Fundamental to our results are questions of analyticity of the normalization in (1), which
we discuss next. (See [8] for elementary properties of real analytic functions of several real
variables.) An explicit formulation of the normalization is

1
Y (i, o) = 7 In (Z exp(N2[B111(Gn) + ﬂzfz(GN)]})~ 3)
Gy

It is proven in [2] that
Yoo (B1, B2) = Nll_I)noo ¥ (B1, B2)

exists for all 81, B2. By Theorem 6.1 of [2], the method, using analyticity, of the proof of
Theorem 3.10 of [15] can be immediately extended to prove that ¥« (81, B2) is analytic in the
real variables B; and B, when |B;| < 2/[k(k — 1)], where k is the number of edges in H,. It is
also noted in [15] that at points where ¥ is analytic,

0 ) 9
%'//oo(ﬂl, B2) = Nl1_r>noo 'EE'//N(ﬂl’ B2), €]

that is, the partial derivatives commute with the limit N — oo. Partial derivatives of ¥,
when they exist, give information on the large-N mean and variance of the densities 71 (Gx)
and 1,(G y) (see [15]), and it is standard in the corresponding modeling of materials, in part for
this reason, to define phases and phase transitions as follows (see [6]).

Definition. A phase is an open connected region of the parameter space {(81, f2)} which is
maximal for the condition that ¥ (81, B2) is analytic. The ‘high temperature phase’ is that
domain of analyticity of ¥ (81, B2) which contains the strip —2/[k(k — 1)] < B> < 0. There
is a phase transition at (8}, B3) if (B}, B3) is a boundary point of an open set on which Yo is
analytic, but ¥ is not analytic at (8, B3).

In this notation our main result is as follows.

Theorem 1. Assume that the chromatic number x (Hy) of H, is at least 3. Then there is a
function s(B1), —0o0 < B < oo, with s(B1) < —2/k(k — 1), such that, for every By, the
interval {(B1, B2) | B2 < s(B1)} does not intersect the high temperature phase.
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2. Proof of Theorem 1

We write [P for the probability mass function Pg, g, given by (1), and E for the expectation
Egy.p,-

Before beginning we need some notation; see [1], [2], [3], [9], and [10] for discussions of
the ideas behind these terms, which basically provide the framework for ‘infinite volume limits’
for graphs, in analogy with the infinite volume limit in statistical mechanics [14].

To each graph G on N nodes we associate the following function on [0, 1]?:

1 if ([Nx7], [Ny]) is an edge of G,
0 otherwise.

[y = [
We define ‘W to be the space of measurable functions 4: [0, 112 = [0, 1] which are symmetric,
i.e. h(x,y) = h(y,x) forall x, y. Forh € W, we define

t(H,h)=/ l_[ h(x;, xj)dx - dxg,

£
0.1 jeE(H)

where E(H) is the edge set of H and £ = |V (H)| is the number of nodes in H, and note that,
for a graph G, t(H, G) defined in (2) has the same value as ¢t (H, fG). For g € ‘W, we write
ti(g) =t(H;, g) fori =1,2.

We define an equivalence relation on ‘W as follows: f ~ gifand onlyif?(H, f) =t(H, g)
for every simple graph H. Elements of the quotient space, W, are called ‘graphons’, and the
class containing & € ‘W is denoted 4.

On ‘W we define a metric in steps as follows. First, on ‘W we define

do(f,g) = sup
S, T<[0,1]

f LF (x. y) — g(x, »)]dx dy|.
SxT

Let X be the space of measure preserving bijections o of [0, 1], and, for f in W and o € X,
define f;(x,y) = f(o(x),0(y)). Using this, we define a metric on W by

S0(f, &) = inf do(foy ga2)-

In the topology induced by this metric, W is compact [11].
Next we need a few terms associated with ... Define, on [0, 1],

Iw) = Juln@) + 3(1 —u) In(1 — u),

and, on 'W,
1) = f I(h(x, y)) dx dy.
[0,112
Also, on ‘W we define

T(h) = Bit1(h) + Bata(h).

The above is relevant because it was proven in Theorem 3.1 of [2] that ¥« (81, B2) is the
solution of an optimization problem:

Voo(B1, B2) = sup[T (k) — I (h)]. ®)

hew
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886 D. ARISTOFF AND C. RADIN

(Note that it follows immediately from (5) that ¥, (B;, B2) is convex.) From Theorem 3.2 of
[2] one has some control on the asymptotic behavior as N — o0, i.e.

8alGn, F*(B1, B2)] = 0 in probability as N — oo,

where F* (B1, B2) is the (nonempty) subset of ‘W on which T — I is maximized, and Gy = f Gn,

We now return to our proof. Our proof will be by contradiction, so we assume from here
on that Yoo (B1, B2) is analytic in By and B, on the entire half-line L = {(B}, B2): B2 < 0},
where B is arbitrary but fixed. We will find a contradiction, which will prove the existence of
the function s(B;). Consider the function

B¥oo ‘£ 8ve
C ) = o ) = Taa ) ’
(B1, B2) ( 36, (B ﬂz)) % (B1, B2) 6
where k is the number of edges in H,. Note that C (81, B2) is analytic on L, since ¥ (B1, B2) is.
Proposition 3.2 of [15] proves that, for all 8, < 0, there is a unique solution u* (81, B2) to
the optimization of
Bru + pou* — Julnu — §(1 —u)In(1 — u)

for u € [0, 1]. Then from Theorems 6.1 and 4.2 of [2] we can use the same argument as used
to prove Equations (33) and (34) of [15] to prove that, for —2/[k(k — 1)] < B2 <O,

d

a—ﬂl%o(ﬂl. B2) = Nli_{noo]E[tl (GM] =nW*) =u*(B1, B2),
0

3—%0(/31,/32) = lim E[n(Gn)] = nu*) = @*(B1, B))*.
B2 N—oo

It follows that C (B, B2) = 1 w*)* —t2(u*) = 0for —2/[k(k—1)] < B2 < 0. Since a function
of one variable which is analytic on L and constant on a subinterval must be constant on L, it
follows that

C(B,p2)=0 onlL, Q)

and so C is identically O on the whole high temperature phase. (Any point in the phase can be
connected to the B; axis by an analytic curve.)

Fix ¢ > 0and i € {1, 2}. Recall that B; = B} is fixed arbitrarily. Write F*(B,) for the set
F*(B1, B2) C W defined above. Using Theorem 7.1 of [2], choose B; sufficiently negative so
that, for every B2 < B,

sup 80(f. p) < — ®)

feF*(B2) 3k
where p = €?#1/(1 +¢?!1) and g(x, y) = 1 unless [ (x(H2) — Dx] = [(x(H2) — Dy], in
which case g(x, y) has value 0.
Let B < B5. Using Theorem 3.2 of [2], choose No(B2) such that N > No(B;) implies that

~ 3k

Let N > No(B2) and Ay v = {Gn: 80(Gw, F*(B2)) < £/(3k)}. There exist hg, € F*(B2)
corresponding to each Gy € Ag y such that

IP’(sD(éN, F*(B) = i) < ;—k ©)

€

% (10)

8a(Gn, hgy) <
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Write E| 4 for the restriction of the expectation to the set A. Using (8) and (10), we have

Ela,[50Gn, pDI= )Y 80(Gn, pHP(GN)

GNEAe N

Y Bo(Gn, hey) + s0lhcy, PDIP(GN)

GNEAN

£
< Z [3k ]]P(GN)
5§ (8))

for N > No(ﬂz).
From Lemma 4.1 of [10], it is easy to see that

6:(Gn) — t:(pg)| < k(G pg). (12)
Write A, y = {Gn:80(Gw, F*(B2)) > €/(3k)}. From (9), (11), (12), and the fact that
SD('» ‘) S l,
|E[#;(GNn)] — ti(pg)| < E[|t;(Gn) — ti(pg)I]

< kE[3(Gw, p@)]

= k(Ela,,[50(Gn, p®1+El;_,[180GN, PO

<e(i+3)

3k 3k

=¢ (13)

for N > Np(B2). Direct computation of (3) shows that

0
a‘f;” (B, B2) = Elt;(Gw)]. (14)

Combining (14) with (4), we may take the limit N — oo in (13) to obtain

t;(pg) — (;//;T’(ﬁl,ﬁz) <e.

Since ¢ > 0 was arbitrary,

.
Jim S (51, ) = 1. 1s)

Direct computation using Equation (2.10) of [2] yields

e (x(H) - 2)
(1+e2P)y(x(H) - 1)

Now, by combining (6) with (15)—(16), we find that limg, , oo C(B}, B2) > 0, in contradiction
with (7), which proves the theorem.

r(pg) =0 and t(pg) = > 0. (16)
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888 D. ARISTOFF AND C. RADIN

3. Conclusion

Consider any of the two-parameter exponential random graph models with repulsion covered
by our theorem. We have proven that the high temperature phase is separated from the
low energy regime by a phase transition. Our proof is based on the traditional modeling
of equilibrium statistical mechanics using analyticity and an order parameter [7], [14], [17].
We also emphasize that this method could not have been used to prove the transition found
in [15] for attractive exponential random graph models since there is a critical point for that
transition: indeed, there is only one phase for 8, > 0.

There remain many open questions. Perhaps the most pressing is the character of the
singularity of ¥, (81, B2) at the boundary of the high energy phase. In the attractive case there
is only one phase, but there are jump discontinuities, in the first derivatives of Yoo (81, B2)
(namely, the average edge and energy densities), across a curve where two regions of the phase
abut, while the edges are independent in the probabilistic sense throughout the phase [15]. We
do not know the nature of the singularity at the boundary of the high energy phase for the
case of repulsion studied in this paper, though we expect the first derivatives of Yoo (81, B2)
to be discontinuous across the boundary. In analogy with equilibrium materials there may be
multipartite phases with different numbers of parts at low energy, though this may require more
complicated interactions [2].
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